rslooki.blogg.se

Blue planet deep sea brine sea
Blue planet deep sea brine sea









blue planet deep sea brine sea

Here, any sedimentary layers that settle to the bed of the brine pool remain exquisitely intact."Ĭore samples that the researchers extracted from the newfound brine pools "represent an unbroken record of past rainfall in the region, stretching back more than 1,000 years, plus records of earthquakes and tsunami," Purkis said. "Ordinarily, these animals bioturbate or churn up the seabed, disturbing the sediments that accumulate there," Purkis said. What happens in a brine pool, stays in a brine poolīecause the brine lacks oxygen, the pool keeps out the usual animals that live in and on the seabed, such as burrowing shrimp, worms and mollusks. They could therefore potentially serve as unique archives preserving traces of tsunamis, floods and earthquakes in the Gulf of Aqaba across thousands of years, Purkis said.

blue planet deep sea brine sea

The proximity of these pools to the coast means they could have accumulated runoff from land, incorporating terrestrial minerals into their chemical makeup. The predators that lurk near the brine "feed on the unlucky," he noted. The brine is devoid of oxygen, so "any animal that strays into the brine is immediately stunned or killed," he explained. Most interesting among those "were the fish, shrimp and eels that appear to use the brine to hunt," Purkis said. Thick carpets of microbes support a diverse suite of animals." "However, the brine pools are a rich oasis of life. "At this great depth, there is ordinarily not much life on the seabed," Purkis said. The biggest pool measured about 107,000 square feet (10,000 square meters) in diameter, while three smaller pools measured less than 107 square feet (10 square meters) in diameter. Using a remotely operated underwater vehicle (ROV), the scientists discovered the pools 1.1 miles (1.77 km) beneath the surface of the Red Sea, naming them the NEOM Brine Pools after the Saudi development company that funded the research. The expedition investigated the Red Sea coastline of Saudi Arabia, "an area which has so far received little attention," Purkis said.

blue planet deep sea brine sea

The researchers discovered the pools during a 2020 expedition onboard the marine exploration organization OceanX's research vessel OceanXplorer. Now, scientists have discovered the first such pools in the Gulf of Aqaba, a northern pocket of the Red Sea, where the submerged salty lakes lie just 1.25 miles (2 km) from shore. Until now, all known deep-sea brine pools in the Red Sea were located at least 15.5 miles (25 km) offshore. These are thought to arise from dissolving pockets of minerals deposited during the Miocene epoch (about 23 million to 5.3 million years ago) when the sea level in the region was lower than it is today. The Red Sea possesses the highest known number of deep-sea brine pools. Only three bodies of water are known to host deep-sea brine pools: the Gulf of Mexico, the Mediterranean Sea and the Red Sea. Scientists know of just a few dozen deep-sea brine pools in the entire world, which range in size from a few thousand square feet to about a square mile (2.6 square kilometers). Related: Photos: 2,300-year-old fortress discovered along the Red Sea

blue planet deep sea brine sea

Studying this community hence allows a glimpse into the sort of conditions where life first appeared on our planet, and might guide the search for life on other 'water worlds' in our solar system and beyond." "Deep-sea brine pools are a great analog for the early Earth and, despite being devoid of oxygen and hypersaline, are teeming with a rich community of so-called 'extremophile' microbes. "Our current understanding is that life originated on Earth in the deep sea, almost certainly in anoxic - without oxygen - conditions," study lead author Sam Purkis, a professor and chair of the Department of Marine Geosciences at the University of Miami, told Live Science. Check out our pick of the best health and fitness deals this Amazon Prime Day.They are among the most extreme environments on Earth, yet despite their exotic chemistry and complete lack of oxygen, these rare pools teem with life and may offer insights on how life on Earth began - and how life could evolve and thrive on water-rich worlds other than our own. Deep-sea brine pools are extraordinarily salty or "hypersaline" lakes that form on the seafloor.











Blue planet deep sea brine sea